Certified Artificial Intelligence Practitioner (CAIP)

(AIP-110.AK1) / ISBN : 978-1-64459-224-3
Lessons
Lab
TestPrep
AI Tutor (Añadir)
97 Revisar
Obtenga una prueba gratuita

Habilidades que obtendrás

El examen de certificación Certified Artificial Intelligence Practitioner está diseñado para profesionales que buscan demostrar habilidades independientes de proveedores e intersectoriales en IA, con un enfoque en el aprendizaje automático para diseñar, implementar y transferir una solución o entorno de IA. El examen de certificación demostrará el conocimiento del candidato sobre los conceptos, tecnologías y herramientas de IA, lo que le permitirá convertirse en un profesional competente en una amplia variedad de funciones laborales relacionadas con la IA.

1

Introduction

  • Course Description
  • How to use this Course
  • Course-Specific Technical Requirements
2

Solving Business Problems Using AI and ML

  • Topic A: Identify AI and ML Solutions for Business Problems
  • Follow a Machine Learning Workflow
  • Topic C: Formulate a Machine Learning Problem
  • Topic D: Select Appropriate Tools
  • Summary
3

Collecting and Refining the Dataset

  • Topic A: Collect the Dataset
  • Topic B: Analyze the Dataset to Gain Insights
  • Topic C: Use Visualizations to Analyze Data
  • Topic D: Prepare Data
  • Summary
4

Setting Up and Training a Model

  • Topic A: Set Up a Machine Learning Model
  • Topic B: Train the Model
  • Summary
5

Finalizing a Model

  • Topic A: Translate Results into Business Actions
  • Topic B: Incorporate a Model into a Long-Term Business Solution
  • Summary
6

Building Linear Regression Models

  • Topic A: Build Regression Models Using Linear Algebra
  • Topic B: Build Regularized Regression Models Using Linear Algebra
  • Topic C: Build Iterative Linear Regression Models
  • Summary
7

Building Classification Models

  • Topic A: Train Binary Classification Models
  • Topic B: Train Multi-Class Classification Models
  • Topic C: Evaluate Classification Models
  • Topic D: Tune Classification Models
  • Summary
8

Building Clustering Models

  • Topic A: Build k-Means Clustering Models
  • Topic B: Build Hierarchical Clustering Models
  • Summary
9

Building Decision Trees and Random Forests

  • Topic A: Build Decision Tree Models
  • Topic B: Build Random Forest Models
  • Summary
10

Building Support-Vector Machines

  • Topic A: Build SVM Models for Classification
  • Topic B: Build SVM Models for Regression
  • Summary
11

Building Artificial Neural Networks

  • Topic A: Build Multi-Layer Perceptrons (MLP)
  • Topic B: Build Convolutional Neural Networks (CNN)
  • Topic C: Build Recurrent Neural Networks
  • Summary
12

Promoting Data Privacy and Ethical Practices

  • Topic A: Protect Data Privacy
  • Topic B: Promote Ethical Practices
  • Topic C: Establish Data Privacy and Ethics Policies
  • Summary
A

Appendix A

  • Mapping Certified Artificial Intelligence (AI) P...oner (Exam AIP-110) Objectives to Course Content

1

Collecting and Refining the Dataset

  • Examining the Structure of a Machine Learning Dataset
  • Loading the Dataset
  • Exploring the General Structure of the Dataset
  • Analyzing a Dataset Using Statistical Measures
  • Module 1 Lab
  • Splitting the Training and Testing Datasets and Labels
2

Setting Up and Training a Model

  • Setting Up a Machine Learning Model
  • Dealing with Outliers
  • Scaling and Normalizing Features
  • Module 2 Lab
3

Building Linear Regression Models

  • Building a Regression Model using Linear Algebra
  • Building a Linear Regression Model to Predict Diabetes Progression
  • Building a Regularized Linear Regression Model
  • Building an Iterative Linear Regression Model
4

Building Classification Models

  • Creating a Logistic Regression Model to Predict Breast Cancer Recurrence
  • Training Binary Classification Models
  • Training a Multi-Class Classification Model
  • Evaluating a Classification Model
  • Tuning a Classification Model
5

Building Clustering Models

  • Building a k-Means Clustering Model
  • Building a Clustering Model for Customer Segmentation
  • Building a Hierarchical Clustering Model
6

Building Decision Trees and Random Forests

  • Building a Decision Tree Model
  • Building a Random Forest Model
7

Building Support-Vector Machines

  • Building an SVM Model for Classification
  • Building an SVM Model for Regression
8

Building Artificial Neural Networks

  • Building an MLP

¿Alguna pregunta? Consulta las preguntas frecuentes

¿Aún tienes preguntas sin respuesta y necesitas ponerte en contacto?

Contáctanos ahora

No hay requisitos previos formales para el examen de certificación.

Sin tarifa de solicitud

Opción múltiple/Respuesta múltiple

El examen contiene 80 preguntas.

120 minutos

60%

Los candidatos que no aprueben el examen de certificación de CertNexus en el primer intento podrán repetirlo gratuitamente una vez transcurridos 30 días naturales desde su primera presentación. Todos los cupones para exámenes de certificación de CertNexus incluyen una repetición gratuita. Los candidatos deberán adquirir otro cupón para cualquier intento posterior a la primera repetición gratuita.

Por declarar

Certified Artificial Intelligence Practitioner (CAIP)

$279.99

Comprar ahora

Cursos relacionados

Todo el curso
scroll to top